본문 바로가기

Study/이산수학

Logic

반응형

Boolean Algebra


Propositions and Well Formed Formulas

propositoin : declarative sentence that "must be true or false but not both"

 

logical connectives :

 

- ¬(not)

 
- $\vee$(or)
- $\Rightarrow$(implies)


- $\wedge$(and)


- $\Leftrightarrow$(if and only if)

Well Formed Formula (wff) : all propositional constants and T/F are wffs

 

tautology : 항등

contradiction : 모순

satisfiable wff : wff that is not a contradiction


Normal Forms and Boolean Algebra

design switching circuits using truth table

- switching function : mapping input to output given by truth table

- procedure

1) Obtain wff corresponds

2) Minimize this wff

3) Obtain the circuit

- notation switching

 - $\wedge$ -> $\cdot$

 - $\vee$ -> +

 - propositional constant -> boolean value

 - wff -> boolean expression

 - connective -> operator

 

literal : either boolean variable or its complement

minterm : boolean expression which is conjuction of literals

maxterm : boolean expression which is disjunction of literals

clause : either dijunction or conjunction of literals

 

conjunctive normal form(CNF) : conjunction of clauses

disjunctive normal form(DNF) : disjunction of cluases

 

Procedure to obtain corresponding boolean expression

- using minterm

1) create minterm for each truth table row

2) take disjunction of minterms

- using maxterm

1) create maxterm for each truth table row

2) take conjunction of maxterms

or use karnaugh map

 

Boolean Algebra $(K,\cdot , +)$ following laws(Huntington's Postulates)

1. (Closure) $a\cdot b$, $a+b$ are in $K$

2. (Commutativity) $a\cdot b=b \cdot a$ and $a+ b=b+a$

3. (Distributivity) $a\cdot (b+c) = a\cdot b +a\cdot c$ and $a+ (b\cdot c) = (a+b)\cdot (a+c)$

4. (Identity and zero elements) $a\cdot 1=a$ and $a+0=a$

5. (Complement) for complement of $a$, $a\cdot \bar{a}=0$ and $a+\bar{a}=1$

6. There are at least two distinct elements a and b, $a\neq b$ in K

 

dual :

1. replace all $\cdot$ by $+$ and $+$ by $\cdot$

2. replace all 0 by 1 and 1 by 0

 

Boolean Algebra Theorem

1. identity and zero (1 and 0) are unique

2. $a\cdot a = a$ and $a+a=a$

3. $a\cdot 0 =0$ and $a+1=1$

4. $a$ have unique complement $\bar{a}$

5. $a=¬¬a$

6. $\bar{1}=0$ and $\bar{0}=1$

7. $\overline{a\cdot b} = \bar{a}+\bar{b}$ and $\overline{a+b} = \bar{a}\cdot\bar{b}$ (De Morgan's Law)

8. $a\cdot (b\cdot c)  =(a\cdot b)\cdot c$ and $a+(b+c)=(a+b)+c$ (Associativity)

9. $a\cdot (a+b) = a$ and $a+(a\cdot b) =a$ (Absorption)

10. $a\cdot(\bar{a}+b)=a\cdot b$ and $a+(\bar{a}\cdot b)=a+b$


Proof Methods

Truth table method

- determine whether wff is tautology by using truth table for "premises=>conclusion"

- needs lots of rows(2^{# of constant} rows)

 

logical equivalance : two wffs $\alpha$ and $\beta$ are equivalent iff $\alpha\Leftrightarrow \beta$ is tautology

inference rule

- format : $\{\alpha_1,\alpha_2,\cdots ,\alpha_k\} |=\beta$ where $\alpha_i$s and $\beta$ are wffs

- interpretation : infer that $\beta$ is true once we have shown each of $\alpha_i$s is true

ex)

$\{\alpha,\beta\} |= \alpha \wedge\beta$

$\{\alpha,\beta\} |= \alpha$

$\{\alpha,\beta\} |= \beta$

$\{\alpha\}|=\alpha\vee\beta$

$\{\beta\}|=\alpha\vee\beta$

$\{\alpha,\alpha\Rightarrow\beta\}|=\beta$   modus ponens(MP)

$\{\bar{\beta},\alpha\Rightarrow\beta\}|=\bar{\alpha}$   modus tollens(MT)

$\{\bar{\alpha},\alpha\vee\beta\}|=\beta$   disjunctive syllogism(disj. syll.)

$\{\alpha\Rightarrow\beta ,\beta\Rightarrow\gamma\}|=\alpha\Rightarrow\gamma$ hypothetical syllogism(hypo. syll.)

$\{\alpha\Rightarrow\beta ,\gamma\Rightarrow\delta\}|=\alpha\wedge\gamma\Rightarrow\beta\wedge\delta$

$\{\alpha\vee\beta,\bar{\alpha}\vee\beta\}|=\beta$

- we see that $\alpha_1\wedge\alpha_2\wedge\cdots\wedge\alpha_k\Rightarrow\beta$

 

Truth method that may be used to show taht a wff is a tautology

Trivial Proof(tirv. pf.) : to show $\alpha_1\Rightarrow\alpha_2$, show $\alpha_2$ is tautology

- $\{\alpha_2\}|=\alpha_1\Rightarrow\alpha_2$

Vacuous Proof(vac. pf.) : to show $\alpha_1\Rightarrow\alpha_2$, show $\alpha_1$ is contradiction

- $\{¬\alpha_1\}|=\alpha_1\Rightarrow\alpha_2$

Direct Proof(dir. pf.) : to show $\alpha_1\Rightarrow\alpha_2$, assume $\alpha_1$ is true and this implies $\alpha_2$ is true

Indirect Proof(ind. pf.) : to show $\alpha_1\Rightarrow\alpha_2$, assume $\alpha_2$ is false and implies $\alpha_1$ also false

Proof by cases(by cases) : for $\alpha_1\vee\alpha_2\vee\cdots\vee\alpha_k\Rightarrow\beta$, show $\alpha_1\Rightarrow\beta, \cdots, \alpha_k\Rightarrow\beta$

Proof by contradiction(contr.) : to show $\alpha$ is true, first assume $\alpha$ is false and arrive contradiction


Tableau Method

tableau method

- mechanical procedure to determine if wff is tautology, contraadiction or satisfiable

- applied directly only to DNF wffs

c.f.) Davis-Putnam procudure requires CNF

- process into DNF

1. eliminate all occurance of $\Rightarrow$ and $\Leftrightarrow$ using $\alpha \Rightarrow \beta\equiv\bar{\alpha}\vee\beta$ and $\alpha\Leftrightarrow\beta\equiv(\alpha\Rightarrow\beta)\wedge(\beta\Rightarrow\alpha)$

2. repeatedly use De Morgan's laus so that resulting wff contains only literals and operator $\wedge$ and $\vee$

3. transform into DNF using $\alpha\wedge(\beta\vee\gamma)\equiv(\alpha\wedge\beta)\vee(\alpha\wedge\gamma))$ 

4. simplify wff resulting from 1~3 using $p\wedge p\equiv p$ and $\bar{p}\wedge\bar{p}\equiv\bar{p}$

- process into CNF

1. same as above

2. same as above

3. transform into CNF using $\alpha\vee(\beta\wedge\gamma)\equiv(\alpha\vee\beta)\wedge(\alpha\vee\gamma)$

4. simplify wff resulting from 1~3 using $p\vee p\equiv p$ and $\bar{p}\vee\bar{p}\equiv\bar{p}$


First Order Logic(FOL) / First Order Predicate Calculus

propositional logic isn't powerful enough to make all inferences that may be possible from given set of premises.

 

first order logic (FOL) ( = first order predicate calculus )

- wffs of first order logic contain predicates and quantifiers

 

predicates

- $P(x_1,x_2,\cdots,x_n),n>0$, mapping from $x_1,\cdots,x_n$ to values T/F

 n: degree of predicate

 P : symbol

 x_i : parameters

 

quantifiers

- Universal $\forall$ : $\forall xP(x)$ : for all x, P(x) is true

- Existential $\exists$ : $\exists xP(x)$ : there exist x that make P(x) true

 

a wff of FOL

- all propositional constants, predicates, T/F are FOL wffs

- if a and b are FOL wffs, all basic representation of a and b are FOL wffs

- $\forall x (\alpha)$ and $\exists x (\alpha)$ are FOL wffs whenever $\alpha$ is FOL wff and x in not bound in $\alpha$

- nothing else is FOL wff

 

 

proof methods of FOL wffs

By Example : To show that $\exists x\alpha(x)$, sufficient to show $\alpha(x)$ is true for some x

By counter example : To show $\forall x \alpha(x)$ is false, sufficient to show $\alpha(x)$ is false for some x

By generalization : To show $\forall x \alpha(x)$ is true, sufficient to show $\alpha(x)$ is true for arbitrary x (!= some particular x)


학교 강의를 토대로 개인 공부 목적으로 작성되어 오타가 및 오류가 있을 수 있으며, 문제가 될 시 삭제될 수 있습니다.

반응형

'Study > 이산수학' 카테고리의 다른 글

Recurrence Relations and Recursive Algorithms  (0) 2021.12.13
Discrete Numeric Functions and Generating Functions  (0) 2021.12.13
Analysis of Algorithms  (2) 2021.12.13
Graphs  (0) 2021.12.13
Relations and Functions  (0) 2021.12.12